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1.0 IYTRODUCTION 

The dynamic stability of a flexible hoogtet synthesized hy two t h i n -  

walled cylinders as shown in FPgplre 1 is investigated. The enalysiri 

assumes that the edges o f  the  cvlindrlcal models are attached to r i g i d ,  

weightless bulkheads incapable of transmitting end moments to the she l l .  

The qlmbaled, time-varying thrust, as in the previous analyses o f  H i l l  

(ref. 1) and Pearson ( re f .  2),  is assumed to be sinusoidal ahout some 

average thrust value. Directional control o f  the thrust is achieved through 

the use of a simple proportional feedback system shown in Fdgirre 3h . 
The formulation contained in thls technical memo was mainly t h e  

combined efforts of C. M. Dearson and .I. W .  Ktncaid with other mcmbets 

of the Structural Dynamics Rranch participating from time to time. T h i s  

report represent8 the proRrcss to date of thts portion of the contract 

work. 



i 

2.0 EQUATIONS OF MOTION 

2 . 1  Motion of t h e  Composite S t r u c t u r e  

The motion of t h e  composi te  s t r r ic t r i re  of F igure  1 will be  tiescribed 

3 , where t h e  c o o r d t n a t e  s y s t e m  i n  t h e  moving c o o r d i n a t e  sys tem of F igure  

is al lowed t o  move i n  a p lane  w i t h  t h e  o r i g i n  always a t  t h e  c e n t e r  of 

mass CM of t h e  composite s t r u c t u r e .  

2 . 2  Equat ions  of Motion of  t h e  S h e l l  Element 

The e q u a t i o n s  of motion of the s h e l l  e lement  are as follows: 

(c )  (2.2-1) 

2 



. .. 

- TERM DEFINITION 

CM1 

CM2 

dl  

d2 

d3 

L1 
L2 

CM 

L 

C e n t e r  of Mass of C y l i n d e r  1 
Center  of  Mass of  C y l i n d e r  2 

C e n t e r  o f  Mass of Composite S t r u c t u r e  

D i s t a n c e  From CM t o  Right  End of C y l i n d e r  1 

D i s t a n c e  From CM t o  Lef t  End of C y l i n d e r  2 

Dis tance  From CM to  Right  End of C y l i n d e r  2. 

Half Length of Cyl inder  1. 

Half Length of Cyl inder  2.  

!kif Lezgth of Composite S t r u c t u r e  

Figure 1 COMWSPTE STRUCTURE COMPOSED OF TWO TIIIV-WALLED CY I , T N D E R S  
WITM R I G I D  WEIGHTLESS Bl~LXlIEADS INCAPABLE OF RENDER IpC; 

3 



x = -L1 
I 1  

x = L - d  1 1  7'" I x = -CL 
1 I' 

F 1  = - 1  F, = 4-1 

Coordinates of C y l i n d e r 2  

El  = 0 
where 

- x1 
6 1  - 5  

L -d 1 1  r =  1 L1 
x=d1-(L1'L2) 

r 2  = -L2 I x2 = 0 

I i2 = +L2 

I 
2 E 2  = +1 

I 
c = o  

I 
t 2  = -1  

F 2  = o  
where 

x2 t, = -  
L2 

5 ,  - - 5 ,  + r 2  - 
Coordinates of Cylinder 2 - 

x= -3 

I 
- 
x = - L  

d 1 4  Ll+L2 1 

L2 
- 

'2 - 

x =  0 

I I 
3 x = d  

x = - t L  - 
I 

g = -1 - I '  € = O  
I= 0 

where 

E = +l 

- 
_I_ Coordinates of  Composite Structure  - 

[ - F , l r  

Figure 2 DIAGRAM SHOWING THE AXIAL COORDINATE AlrD THE 
DIMENSIONLESS AXIAL COORDINATE USED IF THE ANALYSIS 

4 



Y 
I b 

X 

Figure 3a IJNDEFLECTED COMPOSITE STRUCTURE I N  THE MOVING ( X , Y , Z )  
COORDINATE SYSTEM 

Figure 3b DEFLECTED COMFGSXTE STRUCTURE I N  THE MOVING ( X  I 1  ,Y , 2 ' )  
COORDINATE SYSTEM WITH ?RI~;IN ALWAYS AT T H E  CENTER OF 
MASS. (NOTE THAT THE X , Y  COORDINATE L I N E S  CONTTNlK 
TO BE I N  THE X , Y  PLANE).  

5 



where p is t h e  mass d e n s i t y  f o r  both c y l i n d r i c a l  s h e l l s ,  h i s  t h p  t h i c k n e s s  

c o n s i d e r e d  t o  b e  t h e  same f o r  both s h e l l s ,  a-, a a a r e  t h e  components 

of a c c e l e r a t i o n  of t h e  s h e l l  element in t h e  a x i a l ,  c i r c u m f e r e n t i a 1 , a n d  
x 0 ’  z 

r a d i a l  ( p o s i t i v e  inward) d i r e c t i o n s ,  r e s p e c t i v e l y .  The terms N-- 

Nie, Ne--, QE, Q,, %;, M o o ,  and Me: are s t a n d a r d  r e s u l t a n t s ,  and 

P:, Pe and P, are components of  t h e  d i s t r i b u t e d  s u r f a c e  f o r c e s  i n  t h e  

axial, c i rcumferent ia1 ,and  r a d i a l  d i r e c t i o n s ,  r e s p e c t i v e l y .  

xx’ N O O *  

Using Newton’s laws of p lane  motion w e  can write ( r e f e r  t o  F ig .  3.3.) 

Mii p 2rr R1 T o ( l  - YcosRt) cos  (K+l)$ - Mg (a) 

M? = 2n R1 T o ( l  - YcosRt) s i n  ( K + l ) $  ( h )  (2.2-2) 

.. 
Icm$ = -271 R 1  T o ( l  - YcosRt) s i n  K$ ( c )  

where t h e  assumption is made t h a t  t h e  deformat ion  does n o t  change t h e  

h a l f  l e n g t h  n o r  t h e  mass moment of i n e r t i a  of t h e  composi te  s t r u c t u r e ,  

which can be expressed  

(2.2-3) 

where R 1 ,  R2 are t h e  r a d i i  of c y l i n d r i c a l  s h e l l s  1, 2 and t h e  remain ing  

terms are d e f i n e d  i n  Pig. ( 1 ) .  

The a c c e l e r a t i o n  components a i ,  a o ,  a,, w r i t t e n  in terms of t h e  s h e l l  

d i s p l a c e m e n t s  u, v, w and X, Y the c o o r d i n a t e s  of t h e  r e f e r e n c e  frame,  

is w r i t  t e n  

6 
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(b) (2 .2-4)  

a t  

- 2; cos0 
at 

The underlined terms are Corio l i s  terms and w i l l  be neglected i n  the a n a l y s i s .  

Subst i tu t ing  X and ? (from eqs.  ( 2 . 2 - 2 ) )  i n t o  eqs. (2.2-4) and then 

s u b s t i t u t i n g  these new expressions for a- 

e l iminat ing  Q;, Q, w e  can write 

ae, aZ i n t o  eqs. (2.2-1) and x'  

3 2  
= ph 5 + f2(%,B,t )  + phg s i n 9  s in0  

a t 2  
( b )  (2.2-5) 

7 



1 
0 .  

I . . .  

= oh % + f 3 ( 2 , 0 , t )  C phg s i n $  cos6 
a t  

where 
.. 

(4 f1(;7,e,t) = ph(X COS$ + Y sin$ - r case$ - 

f 2 ( G , e , t )  = oh <X s i n $  - ? cos$ + r C O S R ~ J ~  - i i i ) s i n 0  ( h )  ( 2 . 2 - 6 )  

and s i n c e  o n l y  t h e  Rimbaled t h r u s t  T(t) is c o n s i d e r e d  i n  t h e  analysis the 

d i s t r i b u t e d  f o r c e  terms P--, Po, B, are w r i t t e n  

2.3 

P-, = T ( t )  COS K$ - ogh cos$ 

P6 - - [ T ( t )  s i n  KJ] + ngh sin$) s i n 0  

Pz - - [ T ( t )  s i n  KJI + pgh s i n $ ]  cos6  

E-quations i n  Terms of S h e l l  Displacements 

Employing t h e  r e l a t i o n s h i p s  between stress r e s u l t a n t s  and shell d i s -  

p lacements ,  s u b s t i t u t i n g  t h e s e  r e l a t i o n s  and t h e  r e q u i r e d  d e r i v a t i v e s  i n t o  

e q s .  (2.2-51, making some s i m p l i f y i n g  assumptions based on c o n s i d e r a t i o n  of 

a th in-wal led  s h e l l  w i t h  l a r g e  r a d i u s  of c u r v a t u r e ,  w e  can w r i t e  



I .  
0 .  

1 ' .  
1 
I 
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3.0 EQUATIONS OF MOTION I N  DIMENSIONLESS FORM 

We render eqs. (2.3-1) in dimensionless form by use of the following 

transformations 

- 
f a s -  X 

L 

- u  u p -  
L 

T = wlt L 
r a = -  

Eqs. (2.3-1) become 

(3 .0 -1 )  

( 3.0-2) 

10 



where 

- 
F2(i,B,i) = (1-w2)u [-  22. T (l-Ycos%)sin KJI + x G2 cos9 - $tlsinO ( b )  (3 .0 -3 )  

2 

and 
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4.0 END DISPLACEMENTS AND RIGID BODY ANGLE OF ROTATION 

4 .1  Method of Determinat ion o f  the  End Displacements  

The t r a n s v e r s e  end displacements  ~*(-L,T) and ~*(+L,T) shown i n  F i g u r e  
i 

1 are determined as fo l lows:  

A. The f r e e - f r e e  composite s t r u c t u r e  w i l l  b e  t r e a t e d  as a free- 

f r e e  beam of e q u a l  mass and l e n g t h .  A complete  a n a l y s i s  of the  

beam is  p r e s e n t e d  i n  re f ,  11 . 
B. The g e n e r a l i z e d  displacement  e q u a t i o n  used i n  r e f .  11 w i l l  be  

employed i n  t h i s  a n a l y s i s  s i n c e  s o l u t i o n s  f o r  t h e  f r e e - f r e e  

end c o n d i t i o n s  a r e  f u l l y  d e t a i l e d .  

4.1.1 G e n e r a l i z e d  Displacement Equat ion 

The g e n e r a l i z e d  displacement  

where 

qA(T) - g e n e r a l i z e d  t r a n s l a t i o n  c o o r d i n a t e  

qB(T) - g e n e r a l i z e d  r o t a t i o n a l  c o o r d i n a t e  

qn(T) - g e n e r a l i z e d  c o o r d i n a t e  a s s o c i a t e d  w i t h  $*(;) 

6,(f) - nth v i b r a t i o n a l  mode shape  of t h e  f r e e - f r e e  beam 

(4.1-1) 

The e x p r e s s i o n  f o r  t h e  nth v i b r a t i o n a l  mode shape  t h a t  is used i n  t h i s  

a n a l y s i s  is 

1 2  



. .  

x 'n - - an [ s i n h  - (-5 - r + 1) + s i n  & (4 - r f 111 (4.1-2) 2 2 

The $ - func t ion  and i t s  r e s p e c t i v e  s p a t i a l  d e r i v a t i v e s  is d e t a i l e d  i n  

Appendix C, and t h e  g e n e r a l  p r o p e r t i e s  of this f u n c t i o n  is l i s t e d  i n  

ref. 9 and r e f .  10 . 
4.1.2 Displacement  Express ion  and D e r i v a t i v e s  

The s p a t i a l  and time d e r i v a t i v e s  of t h e  g e n e r a l i z e d  d l sp lacemen t  e q u a t i o n  

w r i t t e n  for  t h e  c o o r d i n a t e  sys tem at t h e  c e n t e r  of  mass ( t h e  t r a n s l a t i o n  

c o o r d i n a t e  q ( 7 )  can now be d i s r ega rded)  of t h e  composi te  s t r u c t u r e  as  

f o l l o w s  : 
4 

( 4 . 1 - 3 )  

(4.1-4) 

(4.1-5) 

(4.1-6) 

1 3  



where the generalized coordinates q ( T )  and qn(r) are written 
B 

(4.140) 

(4.1- 11) 

r = 1,2,...,R 

n = l,Z,.*.,N 

B = N + l  

where the notation C:') represents the nth element of sth column matrix 

B = N + 1  

(4 1-12) 

and at is a stability - -  parameter determined from considerarton of beam 

action (see ref. 11 ) of the composite structure. 

14 



4.2 Method of Determina t ion  of  t h e  R ig id  Body Angle of R o t a t i o n ,  JI 

Rewr i t ing  Eq. (2.2-2a) we have 

d 2 ~ ,  2nrd2 - + - T ( t )  s i n  KJ1 = 0 
d t 2  Icm 

where 

T ( t )  To( l  - YcosSlt) 

(4.2-1) 

( b )  (4.2-2) 

(e) 

R 

2 
Assuming small JI and changing to t i m e  T~ = - t we can  rewrite eq. (4.2-1) 

d2JI - + ( a  - 2q C O S ~ T  ) $  = 0 
dT 1 

where t h e  d imens ion le s s  parameters  a and q are 

8nrd2KTo 
a -  q a E  2 

n2  ’ 
IC, 

(4.2-3) 

(4.2-4) 

Equa t ion  (4.2-3) i s  a p a r t i c u l a r  case o f  a l i n e a r  second-order d i f f e r e n t i a l  

e q u a t i o n  w i t h  p e r i o d i c  c o e f f i c i e n t s  cons ide red  as t h e  c a n o n i c a l  form of  

t h e  Matheau e q u a t i o n  hav ing  d i f f e r e n t  s o l u t i o n s  a c c o r d i n g  t o  t h e  values 

of t h e  pa rame te r s  a and q. The t h e o r y  f o r  t h e  s o l u t i o n  of eq. (4.2-3) is 

15 



I 
I . * *  

C 

given  i n  r e f s .  5 ,  6 ,  7 , and t h e  complete s o l u t i o n  f o r  a s i m i l a r  Matheau 

e q u a t i o n  is  g i v e n  i n  r e f .  3 . 
For c y l i n d r i c a l  s h e l l s  approximating t h e  s i z e  of a l a r g e  booster and 

Consider ing  t h e  magnitude of t h e  t h r u s t  t h a t  t h e y  encounter ,  p r o p e r  range  

r e s t r i c t i o n s  on t h e  parameters  a and q w l l l  be  

By c o n s i d e r i n g  t h e  above range r e s t r i c t i o n s  and by a development similar 

t o  t h a t  of ref. 3 i t  is shown t h a t  t h e  s o l u t i o n  of eq. ( 4 . 2 - 3 )  can be  

w r i t t e n  

3 

where 

2 w  1 

n ‘1 
T I -  

Al = A2 A 
a-( 8-2)  

uJ0 
A, a L 

l+q[  + l 1  
a- (2+83 a- (8-2) 

A3 AZ - 
a- (2+6) 

( 4  2 -6 )  

(d)  ( 4 . 2 - 7 )  

16 



B R  
2w 

R2 = - 
1 

and 

(determined from initial conditions) (a) 

(4 .2 -8)  

(b) = (-4 x1 2 Rl& (see Appendix C for A l l  
O1 2L 

and where the stability parameter 6 can he determined from 

# 
s i n  ILL 

2 cos871 - coslraf + 
4a (a-1) 

(4.2-9) 

17 
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. .  

5 . 0  METHOD OF SOLUTION 

5 . 1  Genera l  

Gene ra l ly ,  t h e  method of Donnell i s  used  t o  r educe  eqs. ( 3 . 0 - 2 )  

t o  a more convenient  form. In the  Donnel l  method t h e  e q u a t i o n s  a r e  

r ea r r anged  i n t o  an e igh th -o rde r  p a r t i a l  d l f f e r e n t i a l  e q u a t l o n  t h a t  

s a t i s f y  and two f o u r t h - o r d e r ,  p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s  t h a t  r e l a t e  

u t o  G and 'i t o  G, r e s p e c t i v e l y .  The p a r t i a l  d i f f e r e n t i a l  e q u a t i o n  i n  

i s  of e i g h t h - o r d e r  i n  t h e  s p a t i a l  v a r i a b l e  and s i x t h  o r d e r  i n  t h e  t i m e  

v a r i a b l e ,  c o n t a i n s  r a t h e r  complicated nonhomogeneous te rms ,and  t h e  s o l u t i o n  

of t h e  e q u a t i o n  f o r  W is a lengthy t a s k .  

approximate  d e t e r m i n a t i o n  of t h e  d i sp lacemen t s  u ,  v ,  and w' is  t h e  G a l e r k i n  

procedure  which w i l l  be u s e d  i n  t h i s  a n a l y s i s .  

must 

- 

An accep ted  method f o r  t h e  
- -  

5 . 2  G a l e r k i n  Procedure  

I n  accordance  wi th  t h e  Ga le rk in  procedure  w e  choose approximat ing  forms 

f o r  t h e  d i sp lacemen t s  ii, 5, and as 

- - 
where t h e  purpose  of t h e  func t ions  fmn(Z,0),, gmn(S,e), and h,n(t,O)d are 

t o  i n s u r e  s a t i s f a c t i o n  of t h e  edge c o n d i t i o n s  a t  < = a ,b ,c  (see  F i g u r e  3a) .  

18 
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The a s t e r i s k e d  d isp lacement  terms ~ * ( f , t ) , ~ ) ,  v * ( T , 9 , ~ ) ,  and w * ( z , O , ~ ) ,  

due t o  t h e  bending a c t i o n  of t h e  c y l i n d e r ,  are superimposed o n t o  the shell 

a c t i o n  o f  t h e  c y l i n d e r .  

S u b s t i t u t i n g  t h e  approximating forme of eqs. (5.2-1) and t h e i r  required 

s p a t i a l  and time d e r i v a t i v e s  i n t o  e q s .  (3.0-2a) through (3.0-2c) multiplying 

t h e  f i r s t  of t h e  r e s u l t i n g  equat ions  by f 

and t h e  t h i r d  by h .  ( t ,O)c ,  and forming double  i n t e g r a l s  one o b t a i n s  t h e  

(:,e)=, t h e  second by gjk(z,O) jk c '  

Jk 
f o l l o w i n g  system of e q u a t i o n s ,  

19 
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( b )  CYLINDER 2 NODAL ARKANCEMENT FOR m2 = 6 ,  n2 = 2 

Flgure 4 NODAL ARRANGEMENT OF THE TWO CYLItiDEHS THAT FORM 'IIIE 
COMPOSITE STRilCTVRE SIIOWN IIJ FI(;lWE 1 

20 
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(5.2-2) 

j = O ,  1,2,. . . ,Mi 
k=0*1,2, ..., Nl 

j=0,1,2, ..., M2 
2 k-O,l, 2,. . . ,N c=2 { c*l{ 

M1 m=m2=0,1*2, ..., M2 m=ml=0,1,2, ..., 
n=n2=0, 1,2,. . . ,N2 

= L12 = 

\L2d L21 L2d = L22 = 

n=nl=0,1,2, ..., N 1 
= L1l - a 

d=1 1 
where 

(5.2-3) 

2 1  



Y 

. .  

-7 1 

c= 1 

d=l 

j=O,1,2,...,M2 

2 k=0,1,2,...,N 
M1 c=2 { j=0,1,2,. . . , 

k=O, 1,2,. . . ,N1 

m=m2=0,1,2, ..., M2 
2 n=n2=0,1,2, ..., N 

M1 m=ml=0,1,2, ..., 
n=nl=0,1,2, ..., N 

d=2 [ L12 = 

L2d L21 L2d = L22 a 

1 

L1l E a 

22 



m=ml=0,1,2,.*.,M1 m=m2=0,1,2,..,,M2 

n=n2=0,1,2, ..., N2 n=nl=0,1,2, ..., N 1 
d=l [ oI L1l .a a d-2 [ I L12 

L2d L21 a L2d L22 

where in eqs, (5,2-3, 4, 5 )  t h e  notation is used 

(5.2-6) 

23 
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BY r e q u i r i n g  f,,(S,e)d, g,(t,B)d and h r n n ( t , e I d  t o  be o r t h o g o n a l  o v e r  t he  

r e g i o n  of t h e  s h e l l  w e  can reduce the  e x p r e s s i o n s  to  a se t  of o r d i n a r y  

d i f f e r e n t i a l  e q u a t i o n s  i n  t i m e  o n l y .  

5.3 Edge Condi t ions  

S i n c e  t h e  composite s t r u c t u r e  is c o n s i d e r e d  as having  f r e e - f r e e  end con- 

d i t i o n s ,  t h e  set of edge c o n d i t i o n s  is as fo l lows:  

- 
A s e l e c t i o n  of  fmn(?, 

t h e  s h i f t e d  s t e p  f u n c t i o n s  G(F)d f o r  d = 1 , 2 , t h a t  a s s u r e s  s a t i s f a c t i o n  of  

t h e  edge c o n d i t i o n s  of eqs .  (5.3-1) is  as fo l lows:  

g,(S,0), and h,(j. , ,O)d, under  t h e  i n f l u e n c e  of 

For  d=1 ( c y l i n d e r  1 of 2L1 i n  l e n g t h )  

d2 d l  G 1 ( T )  - [ H ( Z  + -) .. H(T - -)I L L 

24 
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L1-dl 

L1 
r1 = - 

m=ml=O, 1,2, . , Fl1 

n=nl=0,1,2, ..., N1 

For d=2 (cylinder 2 of 2L2 in length) 

- m277 L - h,(S,0)2 = sin - (- 5 + r2 + 1) cos n29 
2 L2 

m=m2=0,1,2, ..., M2 
2 n-n2=0,1,2, ..., N 

25 
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The superimposed d isp lacements  from c o n s i d e r a t i o n  of t h e  l o a d i n g  and t h e  

transverse beam a c t i o n  are 

Using t h e  o r t h o g o n a l  p r o p e r t i e s  of e q s .  (5.3-2,-3) t h e  system of e q u a t i o n s  

(5.2-2,-3,-4) reduce t o  two s e t s  of d i f f e r e n t i a l  e q u a t i o n s ,  one se t  f o r  

each  thin-wal led c y l i n d e r .  Cons idera t ion  of t h e  i n d i c e s  j and k w i l l  then  

reduce  t h e  two sets of e q u a t i o n s  to d i f f e r e n t i a l  e q u a t i o n s  i n  t i m e  T o n l y ,  

which is t h e  d e s i r e d  o h j e c t i v e .  

5 . 4  C o n s i d e r a t i o n  of I n d i c e s  

5.4.1 For d = l ,  j=ml=O, k=nl=O 

d=2, j=m2-0, k=n2=O 

J l - U ? )  To - (1 - YCOS5T)  (LZd - Lid) + 
Eh 2 

(5.4-1 

26 
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which can  be s i m p l i f i e d  t o  
~ 

(5.4-2) 

where 

+ - ' 0  (1 - YCOSET) 
2Ehu 

(5.4-3) 

5 . 4 . 2  For d=1, j=ml=O, kPnl'l.2, ..., M 1  

dn2, j=m2=0, k=n2=1,2,.. .,N2 

which can  be s i m p l i f i e d  t o  

(5.4-4) 

(5.4-5) 

where  Pok(f )d  is t h e  a.h.s.of eqs. (5.4-4) 

27 
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5 . 4 . 3  For d = l ,  j=m1=1,2, ..., Ml;  k-n =O 

d=2, j=ml=1,2,. . . ,M2; k=n2=0 

1 

and the  terms ( a j o ) d , . . . ,  (mjoId are  def ined in APPENDIX A. 

28 
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5.4.4 For d = l ,  j = m l = l , 2 , . ~ ~ , M l ,  k=nl=l ,2 , .o . ,N 1 

d=2, j=m2=1,2, ..., M2, k=n2=1,2, ..., N2 

c o s  k0 d t d 0  

29 
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g (E,,T) s i n  .h (L 5 + (-1) rd + l b d x  (b)  ( 5 . 4 - 9 )  

2 Ld 
+ 

and t h e  terms (ajk)d,..*,(p jk ) are defined i n  APPENDIX A. 
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6.0 S O L U T I O N  OF THE ORDINARY D I F F E R E N T I A L  EQUATIONS 

6 . 1  Summary of t h e  D i f f e r e n t i a l  Equat ions 

A complete summary of t h e  o rd ina ry  d i f f e r e n t i a l  e q u a t i o n s  r e s u l t i n g  

from a p p l i c a t i o n  of t h e  Ga le rk in  method t o  eqs. (3.0-2a ) through (3.0-2c) 

is as fo l lows:  

3 1  
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6.2 S o l u t i o n  of t h e  D i f f e r e n t i a l  Equations- 

6 .2 .1  S o l u t i o n  of Equat ions  (6.1-1) 

S i n c e  t h e  s o l u t i o n  of equations(6.1-1) is non-per iodic  i t  is an 

i n a d m i s s i b l e  s o l u t i o n  i n  t h i s  i n v e s t i g a t i o n .  

6.2.2 S o l u t i o n  of Equat ion  (6.1-21 

S u b s t i t u t i n g  t h e  express ions  f o r  Pok(T)d and o b s e r v i n g  the s u b s c r i p t  

v a l u e s  of d=1,2,  e q u a t i o n s  (6.1-2) become 

C 

'k - S u b s t i t u t i n g  $ ( T )  from S e c t i o n  4.2 and g ( 6 , ~ )  from S e c t i o n  4.1, and per-  

forming Laplace t r a n s f o r m a t i o n s  eqs.  (6.2-1) become 

32 



(a) 

(6.2-2)  

Substituting q ( T )  and q ( T )  

arrive at the following 

B n 

+ 
s=- s 2(l+v)lJ 

cos 

t s  c 

and employing the convolution 

N " 

[COS Qi T- 

theorem w e  

1 
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6.2.3 S o l u t i o n  of Equat ions (6.1-3) 

Performing Lap1.ace t r a n s f o r m a t i o n  t e c h n i q u e s  on e q s .  (6.1-3) and 

s o l v i n g  f o r  'v (T)d and Q ( T ) d  from t h e  r e s u l t i n g  t r a n s f o r m a t i o n ,  we 

can write 
j o  Jo 

( 6 . 2 - 4 )  

where 



A l l  b a r r e d  terms i n  eqs .  (6.2-4) r e p r e s e n t  t h e  Laplace t r a n s f o r m  of t h e  

term and t h e  terms (u .  ) and ( w  ) r e p r e s e n t  t h e  i n i t i a l  d i s p l a c e m e n t s  

of Ujo(T)d and wjo(T)d, r e s p e c t i v e l y .  

J O  d j o  d 

The e i g e n v a l u e s  (w’  ) and (‘oj0)d of eq .  (6.2-5) can be determined  
j o  d 

by 

(6.2-6) 

where 

Expanding t h e  d e t e r m i n a n t a l  e x p r e s s i o n s  of e q s .  (6.2-4), r e a r r a n g i n g  and 

t h e n  app ly ing  t h e  convo lu t ion  theorem w e  can w r i t e  
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M1 1 d=l j = j 1=1, 2 , .  . . , 
k=lr -0 1- 

j = j 2 = 1 , 2 , .  . . ,M2 
k=k2=0 

) d=2 
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j = j 1 = l , 2 , .  , M I  

k=kl=O 
1 d = l  

(6.2-9) 

j = j 2 = l , 2 , .  . . ,M2 

k=k2=0 
1 d=2 
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. 
. .  

where 

(b) (6.2-10) 

Subst i tu t ing  f o r  [P 

eva luat ing  the convolution i n t e g r a l s ,  t h e  express ions  for IJ 

W 

(r , )d]  and [Pj0(,,),], i n  eqs. (6 .2 -8 )  and (6.2-9) and 
j o  

( T ) ~  and jo 
( t ) d  are wr i t t en  i n  f i n a l  evaluated form a s  jo  
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d = l ,  2 

} d-2 
j = j 2 = 1 , 2 , .  . ,M 1 d = L  k=k2=0 

m = l  , 2  
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(con t ' d )  
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(6 .2-12)  

d=1,2 

] d-1 
j = J 1 = 1 , 2 , . r r , M 1  

k=k 1=0 

1 d=2 
j = j 2 = 1 , 2 , .  . . , M 2  

k=k =O 2 

F 1 . 2  

The terms (r jn )d  are given i n  APPENDTX R .  

6 . 2 . 4  So lu t ion  of  Equations (6.1-4)  

Performing Laplace transformation techniques on eqs. ( 6 . 1 - 3 )  r e s u l t s  

i n  
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. 

where t h e  b a r r e d  terms r e p r e s e n t  t h e  Laplace t r a n s f o r m  of t h e  term and 

( u  

V j k ( t ) a  and w j k ( t ) d ,  r e s p e c t i v e l y .  

) , (v jk)d  and ( W j k ) a  a r e  t h e  i n i t i a l  d i s p l a c e m e n t s  of U j k ( f ) d ,  
j k  d 

- 
S o l v i n g  for ii ( T ) ~ ,  v ( T ) ~  and i i .  ( f ) d  in eqs. (6 .2-13)  w e  have 

j k  J k  .I k 
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. 
. . -  

(b) 

(6.2-14) 

(6.2-15) 



* -  

The e i g e n v a l u e s  of  eqs .  (6.2-15) can be determined hy 

where 
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(con t ' d ) 



. .- 

where 

(a) 

( b )  ( 6 . 2 - 2 9 )  

4 6  



. 

Performing inverse  Laplace transform techniques on eqs. (6.2-18)  and u s i n g  

the convolution theorem we can wri te  

1 +pJd c o s  ((Urn 1 

-l 
(b)  (6.2-20) 

dP1.2 
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. . -  

where 

~ 

I 

I 

(6.2-21) I 
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d = l ,  2 

3- j l= 1,2, . . . ,MI \ d = l  

1J 
k=kl=1,2, ... ,N 

m=l , 2 ,3  

(cont ' d )  
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and 

(6 .2 -24 )  



evaluated as f o l l o w s :  

(cont  'd) 
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0 
( c o n t  ' d )  
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I - . - '  

d = l ,  2 

j=I1=1,2,. . . ,M 
k = k l = l , 2 , .  . . ,N 1 

M2 \ d-2 
j"j2 '1 ,2 , .  . . , 

2 J  
k = k 2 = 1 , 2 , .  . . ,N 
m=i, 2,3 

Substituting for q , (n )  and qn(q) in eqs. ( 6 . 2 - 2 5 ,  2 6 ,  27) and e v a l u a t i n g  a l l  

remaining integrals, the convolution I n t q r a l s  

in their final evaluated form are written 

(,T2)ti, and 

T 

(cont ' d )  
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(6.2-28) 

d=1,2 

\ d=l  
j= j1=1 ,2 , .  . , 
k=kl=l,2,  ..., N 4 
j = j 2 = 1 , 2 , .  .. ,M2 } d-2 

k=k2=l, 2 ,  ,N 2 

m=l , 2 , 3  

(cont ' d )  
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d = l  , 2  

j = j l = l , 2 , .  . . , 
M1 \ d = l  

J k = k l = l , 2 ,  ..., N1 

1 d=2 
j = j 2 = 1 , 2 , .  . , M 2  

(6 .2-29)  

2 J  
k = k 2 = 1 , 2 ,  ..., N 

m=l ,2,3 
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57 (cont ' d )  



d = l  

d= 2 

( 6 . 2 - 3 0 )  

The terms (rjn)d,...,(z ) 

APPENDIX R, 

in eqs. (6.2-28, 29, 30) are given in i n  d 
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7.0 STABILITY ANALYSIS OF THE COMPOSITE STRUCTURE 

7 1 I n s p e c t i o n  

I n s p e c t i o n  of t h e  d isp lacement  e q u a t i o n s  UOk(~ )d9 U (T ) d ,  j0 
W and terms i n  t h e  convo lu t ion  i n t e g r a l s  ( J l ) d ,  (J2ld and (J31d 

shows t h a t  c e r t a i n  denominator f requency f a c t o r s ,  i f  equa ted  t o  z e r o ,  

would r e n d e r  t h e  d i sp lacemen t s  unbounded. The s o l u t i o n s  o f  t h e  f a c t o r s  

w i l l  be  t h e  u n s t a b l e  v a l u e s  of t h e  t h r u s t  f requency .  

(1) j o  d 

7.2 E x p l a n a t i o n  of S u b s c r i p t  Nota t ion  

The t h r e e  e x p r e s s i o n s  f o r  R i  (de f ined  e a r l i e r  i n  Matheau e q u a t i o n  

s a t t i o n )  Ere written 

where 

A 

Bn 
n2 = 2w 1 

= 22.373 1 

Using t h e  parameter  1 

(7.2-1) 

(7.2-2) 

(7.2-3) 

E = {  p i = 2  1 
i ( 7  J - 5 )  
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. . .  
e q u a t i o n s  (7 .2-1)  th rough (7.2-3) can be  w r i t t e n  c o n c i s e l y  as 

i = 1, 2 ,  3 

7.3 S t a b i l i t y  Equa t ions  

Using t h e  n o t a t i o n  of e q u a t i o n s  (7.2-6) and r e f e r r i n g  t o  

eqs. (6.2-3, -11, -1.2, -E,  -26,  -27)  t h e  s t a b i l i t y  e q u a t i o n s ,  and source 

of t h e  e q u a t i o n ,  is p r e s e n t e d  as follows: 

(7.3-1) 

(7.3-2) 

(7 .3-3)  
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. * -  

( 7 . 3 - 4 )  

( 7 . 3 - 5 )  

(7.3-5 1 

( 7 . 3 - 7 )  

d = 1,2 

1 = 1,2,3 
j = j, =l,Z,*a*,Ml; d=l 
j = j, = 1,2, ..., M2; d=2 

rn = 1,2 

( 7  a 3 - 8 )  

( 7 . 3 - 9 )  

(7 .3 -  10 ) 
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i P  
(7 *3-12) 

(7.3-13) ' 

f 7  9 l / . j  
\ I  * d - L - r ,  

a i  2 - (G& 2 = o  

,m [(1-2)2 + ci 61- = , ujk 
Y 

(7.3-15) 

(7.3-16) 

(7.3-17) 

d = 1,2 

i = 1,2,3 
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(ii+qI2 - (GjkId m 2  = 0 
(7.3-18) 

(7.3-19) 

(7.3-20) 

d = i , 2  

i = 1,2,3 

d = 1,2 

i = 1,2,3 

(7.3-21) 

(7.3-22) 

(7.3-23) 
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d = 1 , 2  

i = 1,2 ,3  

d = 1 , 2  

I = 1,2 ,3  
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'$ d=l 
j = j, = 1,2,0**, 

1 k = kl = 1,2,...,N 

m = 1,2,3 

p = 1,2,3 

(7.3-30) 

(7.3-31) 

(7 -3-32 ) 

d = 1 ,2  

i = 1,2,3 

j = j, = 1,2,..-,? } d=l 
1 k = kl = 1,2,.00,N 

j = j, = 1,2, ..., M2 } d=2 
m = 1,2,3 
k = k2 = 1,2,e**,N2 

(7.3-33 ) 

(7.3-34) 

(7 03-35) 

65 



d = 1 , 2  

j = j ,  = 1,2,...,M '} d=l 
1 k = k l  = 1,2,...,N 

j = j 2  = 1,2,...,M2 
k k2 = 1 9 2 9 . . * 9 N 2  } d=2 

m = 1 , 2 , 3  

r = 1,2,...,R 

s = - s  t o  +s  

7.4 Summary of S t a b i l i t y  Equa t ions  

S o l u t i o n s  of t h e  s t a b i l i t y  e q u a t i o n s  of S e c t i o n  7.3 will r e n d e r  the 

u n s t a b l e  v a l u e s  of t h e  t h r u s t  f requency.  

s t a b i l i t y  e q u a t i o n s  are g iven  below. 

A complete  summary of t h e  

- NO Equat ion  No. 

1. (7.3-1) 

2. (7.3-3 ) 

3. (7.3-5) 

4. (7 .3-8) 

5 .  

6. 

7. 

8. 

9. 

10. 

11. 

1 2  

13 

(7.3-11) 

(7.3-14) 

(7.3-17) 

(7  -3-20) 

( 7  .3-23) 

(7.3-26) 

(7  A-29 ) 

(7.3-32) 

(7.3-3 5 )  
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8.0 COMMENTS 

8.1 Genera l  

The r e p o r t  r e p r e s e n t s  a c o n t i n u a t i o n  i n  t h e  a n a l y s i s  of t h e  dynamic 

s t r u c t u r a l  behavior  of a l a r g e  rocke t  b o o s t e r  ( s e e  Fig.  1 f o r  t h e  model 

used i n  t h i s  a n a l y s i s )  s u b j e c t e d  t o  l o n g i t u d i n a l  e x c i t a t i o n s .  I n  cons ide ra -  

t i o n  of t h e  model used i n  t h i s  a n a l y s i s ,  c e r t a i n  d e f l e c t i o n  forms are 

assumed and by a p p l i c a t i o n  of t h e  well-known Ga le rk in  method two s h e l l  

s o l u t i o n s  r e s u l t ,  one f o r  each s h e l l .  

8.2 N a t u r a l  Frequencies  

The n a t u r a l  f r e q u e n c i e s  of the free-free, th in-wal led ,  c i r c u l a r ,  

c y l i n d r i c a l  s h e l l s  as modif ied by the  r e l a t i v e  coup l ing  e f f e c t  of each  

c y l i n d e r  upon t h e  o t h e r ,  w i th  a comparison of t h e  n a t u r a l  f r e q u e n c i e s  of an 

earlier s i n g l e  c y l i n d e r  a n a l y s i s  of r e f .  3 , i s  f u l l y  d e t a i l e d  i n  Appendix D. 

8.3 Uns tab le  Values of t he  Thrus t  Frequency, n 

R e f e r r i n g  t o  7.0 STABILITY ANALYSIS of t h i s  r e p o r t  one can see t h a t  

s t a b i l i t y  e q u a t i o n s  are used t o  determine t h e  u n s t a b l e  v a l u e s  of t h e  t h r u s t  

f requency  f o r  c e r t a i n  l o n g i t u d i n a l  and c i r c u m f e r e n t i a l  modal c o n f i g u r a t i o n s  

of each  c i r c u l a r ,  c y l i n d r i c a l  s h e l l .  

8.4 Recommendation f o r  Future  I n v e s t i P a t i o n  

Use of t h e  assumed d e f l e c t i o n  shapes and t h e  Ga le rk in  method has  

r e n d e r e d  s o l u t i o n s  i n v o l v i n g  undis turbed  (or n o n d i s t o r t e d )  modal p a t t e r n s  

i n  t h e  model. An improved model c o n s i s t i n g  of th in -wa l l  c y l i n d e r  - c o n i c a l  
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frustum - cylinder combination should be considered. While a model of 

this type is still an idealization of an actual vehicle, it would 

possess the following improvements over the previously considered 

model of cylinder - bulkhead - cylinder combination. 
A. A more accurate synthesizetion of a missile profile would be 

achieved. 

B. Consideration of the end-rigidity effect of the conical 

frustum in matching boundary conditions would improve the 

shell analysis. 

C. A better understanding of the relative coupling effect of  

certain shell geometries in altering the vibrational mode 

shapes of  their adjacent members in a composite structure 

would result. 
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APPENDIX A 

SPECIAL TERMS APPEARING IN THE REPORT 

A-I ,  General Statement 

Certain terms in the second order differential equations in this 

report are quite lengthy. A complete srimmary of these important terns 

are listed in this appendix. 

A-11. Cylinder 1 Coefficients 

A-11-1, For j, = 1,2 ,..., M; kl = 0 

The coefficients used in eqs. ( 5 . 4 - 6 a ,  -6b) for d = l  are as 

follows : 

I 

7 1  



r 

L 1  L L L 1  L 

(A-3) 

(A-4)  

(A-5) 

(A-7 )  



-1 4 2  1 } 
1 

A-11-2.  For j, = 1 , 2 ,  ..., MI; k l  = 1 , 2 ,  ..., N1 

(A-8) 

(A-9)  

( A - 1 0 )  

( A - 1 1 )  

(A-12)  

The coefficients used ineqs. (5.4-8) for d = l  are as f o l l o w s :  
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(A-13) 

(A-14)  

(A-15) 

r 

(A- 16)  

'I J 

1 

74 



r 

L 

L l  

(h-17) 

- s i n  

L 

( A - 1 8 )  

- s i n  j l n  (- 
L1 

- 1 

(A-19)  

(A-20)  
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- sin j l a  (- 

1 

(A-21) 

r 1 

3 1 d l - d 2  
2 L1 

- - sin j ,n  I-) (A-23) 

t- 1 

d1-d2) I] (A-26) - - (4) (-1 [(1)?+ h 2 k :  I [ -  sin j TI (- 
a2 j l a L  -I T L  1 

1 2  2 1 q  2 L 1  I L1 2 
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. .  
A-111,  Cylinder 2 Coef f i c i ent s  

A-111-1.  For j 2  = 1 , 2 ,  ..., M2; k 2  = 0 

The c o e f f i c i e n t s  used i n  cqs. ( 5 . 4 4 )  for ~ 12 are  as f o  

d + d  3' L '1 
[ s i n  j 2 n  ( - s i n  j 2 n  ( 

L2 L2 

tows : 

(A-27) 

(A-28) 

(A-29) 

(A-30) 

17 



. . .  

( A - 3 1 )  

( A - 3 3 )  

1 

( A - 3 4 )  

J 



*.. 

- s i n  j 2 n  ( (A-35) 
L2 [ s i n  j n ( 3"l) 

L2 2 j  nL 2 
2 

(A-37) 

A-111-2. For j 2  = 1 ,2 , .  . . ,Pi2; k2  = 1 ,2 , .  . . ,N2 

The c o e f f i c i e n t s  used i n  eqs. (5.4-8) f o r  d=2  are as follows: 
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. .  

(A-40) 

(A-41) 

- sin j 2 n  ( 
L2 

{(F - 1) [cos  - j zn ( ( A - 4 2 )  
2 
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j 2 n  2dl-L1 

- sin 

L 
1 

( A - 4 4 )  

( A - 4 5 )  

r 

1 

- s i n  j 2 n  

.i 277 
d +d L 

( 1 3' - s i n  
L2 

L I 
( A - 4 7 )  

( A - 4 8 )  



. .  
c 

(A-49) 

(A-50) 
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APPENDIX B 

COEFFICIENT INTEGRALS 

B-I Genera l  Statement  

C e r t a i n  i n t e g r a l s  appear  as c o e f f i c i e n t s  i n  t h e  second o r d e r  

d i f f e r e n t i a l  e q u a t i o n s  i n  t h i s  r e p o r t .  A summary of t h e s e  c o e f f i c i e n t  

i n t e g r a l s  appear  i n  t h i s  appendix, 

d e r i v a t i v e s  t h a t  appear  i n  t h e  c o e f f i c i e n t  i n t e g r a l s  are l i s t e d  i n  

Appendix C. 

The $- func t ions  and t h e i r  r e s p e c t i v e  

B-TT C y l i n d e r  1 C o e f f i c i e n t  J n t e g r a l s  - -___ 
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~, 

= [ ( , ( E )  cos  - jl* ( L f - rl  + 1 ) d t  

L 1  
( Z j n ) l  

j = j ,  = 1 , 2 ,  ..., MI 
n = 1 , 2 , . . . , N  

B-111 Cylinder 2 C o e f f i c i e n t  In tepra l s  

( t .  )2 = f) $ ; ( E )  s i n  (L 2. + r2 + l ) d t  
Jn C 2 L2 

(A-7) 

(B-12) 

2 j = j2 = 1,2,...,2.I 

n = 1,2,...,N 
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B-IV Eva lua t ion  of Cyl inder  1 I n t e g r a l s  

By s u b s t i t u t i n g  t h e  $- func t ions  of Appendix C i n t o  e q u a t i o n s  

(B-2) th rough (B-6) t h e  c o e f f i c i e n t  i n t e g r a l s  of Cyl inde r  1 may be  

eva lua ted .  The e v a l u a t e d  i n t e g r a l s  are p r e s e n t e d  below. 

{cost1 (ArP;)c  - a,, s i n h  (ArgIc - cosh  (Arg), 
c 

1 + an s i n h  (Arg), 

11 - s i n  (Arg), 

j lrr (d1-d2) 1 } + A, {sin (- j P d l )  - s i n  
L1  2L1 

[(A;,,)l { - s i n h  (Arg), + an cosh  (Arg)c + s i n h  (Arg), 

- a, cosh  (Arg), 

n = 1 , 2 , . . . , N  
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1 [(Ayn)l { s i n h  (Arg), - a, cosh (Arg), - s i n h  (Arg), + a, cosh (Arg), 

[ (Ain)l  {- cosh (Arg), + an s i n h  (Ate ; ) ,  + c o s h  (Arg), - an s inh  (Arg)a}  
L 

+ ( A i n l l  {cos (Arg)c - an sin (Arg),  - cos (Arg), t 

(B- 14) 

1 + a, sinh (Arg), 
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W d r d 2 )  1 - s i n  [ j 1% 
*L1 

{ s i n  
+ 'n L1 

- s i n h  ( A r d c  t an cosh  (Arg)c + s i n h  (Arg), 

3 - a, cosh (Arg), 

+ !A? l 1  l s i n  (Arg), + CL, _ _  cos (Arg), - s i n  (Arg), 
J n -  ( 

'j = j l  = 1 , 2 , .  . . , M I  

n = 1,2,...,N 

(13-15) 

s i n h  (Arg), - an cosh ( A w l c  - s i n h  (Arg), f an cosh (Arg), 

j1n(d1-d2)1 
j 1"d l )  

2L1 
+ A, { s i n  (- - s i n  [ 

L 1  

(A-n)l - cosh (Arg)= t an s i n h  (Arg), + cosh  (Arg), - an sinh (Arg),} 
[ j  { 

(B-16) I 

n = 1,2,...,N 
a7 



[ (Ain)l { - s i n h  (Arg), + an cosh  (Arg), + s i n h  (Arg), - an cosh  (Arg), ) 

j1"l(d1-d2) J I j 1"dl)  + An {cos (- - c o s  [ 
2L1 111 

{ - r m h  + an s i n h  (Arg), + cosh  (Arg), - a s i n h  (Arg) n 

1 1 )  + (A;n)l{ - cos (Arg), + ol, s i n  (Arg), + cos (Arg), - a, s i n  (Arg), 

j = j, = 1,2, ..., M1 (B-17) 

n = 1,2,...,N 

(B-18) 

j = jl = 1 , 2 ,  ..., MI 
n = 1 , 2 , . . . , N  

a n d  A, and an are g i v e n  i n  Appendix C. 
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B-V. Evalua t ion  of Cyl inder  2 I n t e g r a l s  

By s u b s t i t u t i n g  t h e  $-funct ions of Appendix C i n t o  e q u a t i o n s  (B-7) 

th rough (B-12) t h e  c o e f f i c i e n t  i n t e g r a l s  of C y l i n d e r  2 may b e  e v a l u a t e d .  

The e v a l u a t e d  i n t e g r a l s  are  presented  below. 

+ (ATn)2  { - c o s  (Arg)b + an s j n  (ArgIh + cos (Arg) - an s i n  (Arg)c 
C 

- s i n h  (Arg)b + an cosh (Arg)b + s i n h  (Arg), - an cosh (Arg), 

j = j 2  - 1 , 2 ,  ..., M 2  

n = 1 , 2 ,  ..., N 
(B-19) 

(L f t r2 + 1)df 5 
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I 

[(A:n)2 { s i n h  (Arg)b - a, cosh (Arglb - s i n h  (ArgIc + an cosh (Arg), 

+ (AinI2{- cos (Arg)b + an s i n  (Arg)b + cos (Arglc  - an s i n  (ArgIc}])  

c 

j = j 2  = 1 A . . . , M 2  (B-21) 

n - 1 , 2 , . . . , N  
90 



( Y ~ , ) ~  a f 4:'(:) s i n  - j 2= (& + r2  + 1 ) d t  
2 

C 

+ ( A j n I 2 { -  + -  s i n  (ArgIb - an cos (ArgIb + s i n  iArgjc  + an cos (Arg) 11 
c l] 

}N + (A;n)2 {cos (Arg)b - an s i n  (Arglb - cos (Arg), + an s i n  (Arg), 
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+ (Af , I2  { - c o s  (Arg) + a,, s i n  (Arg)b + c o s  (Arg) 
b C 

11) - an s i n  (Arg)= 

j = j2  0 1,2, ..., M2 

j = j 2  = 1,2, ..., M2 
n = 1,2,...,N 

and h and a are  g iven i n  Appendix C.  n n 

92 

(B-23) 

(B-24) 



APPENDIX C 

REPRESENTATION OF THE 4-FIINCTION AND D E R I V A T I V E S  

C-I 4 -Funct ions  f o r  t h e  Free-Free Case 

The + - f u n c t i o n  and i t s  r e s p e c t i v e  d e r i v a t i v e  f o r  t h e  f r e e - f r e e  

c a s e  i s  summarized below. 

., 
I Y  

c 
n=l  

; 
n=l 

F 
n=l 

?h - 1 N 
-n - = 1 cosh - (E-r+l )  + COS - ( C - r t l )  n 2 2 n=l  



c-11 Argument Terms 

R e f e r r i n g  t o F i g s .  2 and 3, i t  can be  seen  t h a t  t h e  argument i n  

Equa t ions  ( G I .  

c o o r d i n a t e  w i l l  be  a s  Eollows: 

t h r u  ( C - 5  1, a t  c e r t a i n  d i s t a n c e s  a long  t h e  a x i a l  

Argument in EquatioLis ( C i i )  t h r u  (G5) 

( c - r t -1 )  = ( f  - - d 4  + 1 )  L 

- L-d4 
( 6 -  - d4  + 1) =L A t  c = O ,  L ((2-10) 
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e . ,  

C - 1 1 1  Evaluation of t l ie  $-Functions a t  t h e  L i m i t s  

S i n c e  it is n e c e s s a r y  to  have t h e  C$I v a l u e s  a t  t h e  l i m i t s  b e f o r e  

we can  e v a l u a t e  t h e  c o e f f i c i e n t  i n t e g r a l s  i n  APPENDIX B, t h e s e  e x p r e s s i o n s  

a r e  l i s t e d  below. 

C - 1 1 1 - 1  Eva lua ted  a t  l i m i t s  a and c. 

( s i n h  - [" - :d24d4)] 
an 

+ 

( d  -d ) X, 2 [L - L  4 1 ] = 1 cosh cos - 
[ L -  

N N 

n=l a n=l 
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L L J 

(d +d ) (d  +d 
+ a n {sinh 2 [L - L  * 4 ]  - s i n  $ [L - '1) (C-13 

- a ( c o s h %  [ L -  ( d  L 4  -d ( d  L4 -d ') 
n 

C-111-2 Evaluated a t  l i m i t s  c and b 
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N 

n (C-17) 

1 - cosh 2 ] +  cos 2 [ L 

A L - ( d 4 - d l )  A L - (d4-dl) 

{ A ; [ L - L 4  (d -d '1 - s i n +  [ L - L 4  ( d  -d I ] )  (C-18) 
+ a s inh  - n 
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( d  -d ( d  -d 
+ a  n (cash$ [ L *  L 4  I ]    COS^[^-^^ 1) ( C - 1 9 )  

n C-IV Values  o f  X and a n 

The v a l u e s  o f  X n  and a appear ing  i n  eqs.  (C-11) through (C-14) n 

and (C-16) th rough (C-19) have been c a l c u l a t e d  ( s e e  Young, r e f .  10 

f o r  t h e  f r e e - f r e e  beam and a r e  p re sen ted  h e r e  f o r  pu rposes  o f  computat ion 

o f  t h e  + - f u n c t i o n s  f o r  a g iven  c y l i n d e r .  

1. 4.7300 0.9825 

2. 7 08532 1 .W07 

3. 10.9956 0.9999 

4. 14.1377 1.0000 . 

5. 17 . 2787 0 . 9999 

For  n > 5 ,  t h e  v a l u e s  o f  A n  and an a r e  approximated  by 

N lT 
h - (2n-1) - n 2 

a 1.0 n 
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APPENDIX D 

COMPARISON OF THE NATURAL FREQUENCIES 
OF THE S I N G L E  CYLINDER AND THE 

NATURAL FREQUENCIES O F  THE COMPOSITE CYLINDER 

D - I  General  S ta tement  

A comparison o f  t h e  n a t u r a l  f r e q u e n c i e s  o f  t h e  s i n g l e  c y l i n d e r  

a n a l y s i s  (see ref .  3) 

c y l i n d e r  a n a l y s i s  i n  t h i s  r e p o r t  

c o u p l i n g  e f f e c t  o f  j o i n e d  c y l i n d e r s  is t o  b e  i n v e s t i g a t e d .  

and t h e  n a t u r a l  f r e q u e n c i e s  o f  t h e  composi te  

must b e  made i f  t h e  r e l a t i v e  

D - I 1  N a t u r a l  Frequency Equat ions f o r  t h e  S i n g l e  C y l i n d e r  

D - 1 1 - 1  For j=1, 2 ,  ... M; k 2= 0 

The n a t u r a l  f requency e q u a t i o n s  f o r  t h e  c a s e  o f  j = 1, 2 ,  ... M ;  

and k = 0 a r e  w r i t t e n  

2a 2a 

where (see p 60 of re f .  3)  

a = l  



D-11-2 For j = 1, 2 ,  M; k = 1, 2 ,  -.., N 

The n a t u r a l  f requency equat ions  f o r  t h e  c a s e  of j = 1, 2 ,  ... M 

and k = 1, 2 ,  ..., N a r e  w r i t t e n  ( s e e  p. 62 of ref. 3) 

jk jk 
11 ‘33 - ‘31 13 c )  + (‘jk jk  

jk Cjk Cjk jk jk Cjk + ‘jk ‘jk ‘jk 
IW;k)* (WJ‘,)’ [Wj3k)2 =‘11 22 33 “21‘32 13 3 1  12 23 

jk jk ‘.jk jk jk Cjk jk ‘jk ‘jk - ‘31 ‘22 13 - ‘21 ‘12 33 ‘11 32 23 

D-I11 N a t u r a l  Frequency Equat ions  For t h e  Composite S t r u c t u r e  
Formed by Two C y l i n d e r s  

D-111-1 N a t u r a l  Frequency Equat ions  For  C y l i n d e r  1 

D-111-1.1 For j = j, = 1, 2 ,  M1; k = k l  = 0 

(D-10) 

100 



where 

where ( a j O i l ,  i b j O j l ,  e t c . ,  a r e  def ined i n  Ai?T?E::ET:: A. 

N1 D-111-1.2 For j = j, = 1, 2, .*., Ml; k = k l  = 1 ,  2 ,  .+., 

where 

(D-17) 
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where ( a j k l l  ( b j k l l  , etc . ,  a r e  de f ined  i n  APPENDIX A 

where 

D-111-2 N a t u r a l  Frequency Equa t ions  For  C y l i n d e r  2 

D-111-2.1 For  j = j2 = 1, 2 ,  .. ., M 2 ;  k = k2 = 0 (E-21) 
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where ( a  (b e t c . ,  a r e  de f ined  in APPENDIX A. jo 2 j o  2 

N2 
D - I U - 2 . 2  Far j = j2 = 1, 2 ,  ..., M 2 ;  k = k2 = 1, 2, ..., 

(D-26) 

(D-28)  

- ( g j k ) 2 ( b j k ) 2 ( n j k ) 2  (D-30) 

103 



(D-31) 

(D-32) 

where ( a j k ) 2 ,  ( b j k I 2 ,  e t c . ,  a r e  de f ined  i n  APPENDIX A .  

D-IV Limi t ing  Cases 

The l e n g t h s  o f  c y l i n d e r  1 and c y l i n d e r  2 w i l l  be  reduced t o  z e r o ,  

r e s p e c t i v e l y ,  and t h e  s p e c i a l  terms of  APPENDIX A.  a r e  e v a l u a t e d  f o r  

t h e s e  t w o  l i m i t i n g  cases .  The n a t u r a l  f r e q u e n c i e s  o f  t h e  composi te  

s t r u c t u r e  should  r educe  t o  t h e  n a t u r a l  f r e q u e n c i e s  of t h e  s i n g l e  

c y l i n d e r  i n  t h e  l i m i t i n g  case. 

D - I V - 1  L imi t ing  Case 1, L2 = 0 

R e f e r r i n g  t o  F i g u r e  1 on page 3 i t  can be  seen  t h a t  when L = 0 ,  2 

t h e  c e n t e r  o f  mass s h i f t s  t o  t h e  c e n t e r  o f  c y l i n d e r  1, t h u s ,  

d l  = d 2  = L1 = L. 

t h r u  ( D - 1 3 )  a r e  

For  t h i s  l i m i t i n g  c a s e  t h e  terms o f  e q u a t i o n s  (D-11) 

(D-33) 

(D-34) 

(D-35) 
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(0-36)  

(D-37) 

S u b s t i t u t i n g  e q u a t i o n s  (D-11) t h r u  (D-13) I n t o  e q u a t i o n s  ( 2 - 9 ;  aiid 

(D-101, i t  can  be seen  t h a t  t h e  n a t u r a l  f requency  e q u a t i o n s  of c y l i n d e r  1 

become j u s t  t h a t  o f  t h e  s i n g l e  c y l i n d e r  ( eq r?a t ions  (D-1) and (D-2)r i . e . ,  

(D-40) 

(D-41) 

S i m i l a r l y ,  f o r  t h e  c a s e  

(D-17) t h r u  (D-20) a r e  e v a l u a t e d  and s u b s t i t u t e d  i n t o  e q u a t i o n s  (D-14) 

t h r u  (D-16). 

(D-6) t h r u  ( D - 8 ) ,  r e s p e c t i v e l y ,  shows t h a t  t h e  n a t u r a l  f r equency  

j = 1, 2 ,  ..., Ml; k = 1, 2 ,  ..., N1, e q u a t i o n s  

A comparison of equa t ions  (D-14) t h r u  (D-16) w i t h  e q u a t i o n s  

e q u a t i o n s  o f  c y l i n d e r  1 become j u s t  t h a t  of t h e  s i n g l e  c y l i n d e r ,  i .e . ,  



which r e n d e r s  

(0-44) 

D - I V - 2  L imi t ing  Case 2, L1 =3 0 

R e f e r r i n g  t o  F igu re  1 on page 3 i t  can be  s e e n  t h a t  when L 1 ' o ,  

t h e  c e n t e r  o f  mass s h i f t s  t o  t h e  c e n t e r  o f  c y l i n d e r  2 ,  t h u s ,  d l  -- - d3 

= L2 = L. For t h i s  l i m i t i n g  case t h e  te rms  of e q u a t i o n s  ( D - 2 3 )  t h r u  

( D - 2 5 )  a r e  de te rmined  and t h e  n a t u r a l  f requency  e q u a t i o n s  ( D - 2 1 )  and 

( D - 2 2 )  a r e  eva lua ted .  

e q u a t i o n s  ( D - 1  and ( D - 2 )  shows t h a t  f o r  t h e  l i m i t i n g  c a s e  L1 = 0 ,  t h e  

n a t u r a l  f r equency  equa t ions  o f  c y l i n d e r  2 become j u s t  t h a t  o f  t h e  s i n g l e  

c y l i n d e r ,  i .e . ,  

A comparison o f  equa t ions  ( D - 2 1 )  and ( D - 2 2 )  w i t h  

( D - 4 8 )  

S i m i l a r l y ,  i t  can be  shown t h a t  t h e  n a t u r a l  f r equency  e q u a t i o n s  

( D - 4 2 )  t h r u  ( D - 4 4 )  f o r  c y l i n d e r  2 become j u s t  t h a t  of t h e  s i n g l e  

c y l i n d e r  e q u a t i o n s  ( D - 6 )  t h r u  ( D - 8 ) ,  i .e.,  
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which renders 

( D - 5  1) 

( D - 5 2 )  

( D - 5 3 )  

( D - 5 4 )  

( D - 5 5 )  

107 


